Lesson Plans

Year 9 Mathematics

Some general points about the following lesson plans:

\star The lesson plans outline only one way of sequencing the learning material in each chapter of the textbook.
\star The content and sequence will obviously vary from class to class (The following guide is ambitious in many instances).
\star All activities and investigations in each chapter have been deliberately designed to support the National Curriculum content whilst keeping in mind the development and reinforcement of skills required in the study of mathematics in Year 11/12.
\star The length of lessons vary from school to school and even within schools. The following guide is based on $35 / 40$ min lessons because it was reasoned that adjustment to $60 / 75 / 90 \mathrm{mins}$ lessons would be easier than reducing lesson plans.
\star Students may be challenged further by completing each chapter Task, Competition Questions, and by finding and entering any of the many competitions, challenges, projects etc that may be found on the Internet. Such students may benefit by doing an Internet search early in the year and planning entries before they close.

Assessment

A task
Mental computation
End of Term Test

7th week of Term
Last week of Term
Last week of Term

Summary of Term 1 Lessons (10 weeks)

Chapter 1	Indices 1
Chapter 2	Algebra 1
Chapter 3	Area
Chapter 4	Graphs
Chapter 5	Review

Number \& Algebra - Real Numbers 2 weeks
Number \& Algebra - Patterna \& Algebra 2 weeks
Measurement \& Geometry - Units 2 weeks
Number \& Algebra - Linear \& Non 2 weeks
2 weeks

Note: The workprogram contains a detailed mapping of curriculum content.

Year 9 Level Description

The proficiency strands Understanding, Fluency, Problem Solving and Reasoning are an integral part of mathematics content across the three content strands: Number and Algebra, Measurement and Geometry, and Statistics and Probability. The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics.

At this year level:

- Understanding includes describing the relationship between graphs and equations, simplifying a range of algebraic expressions, explaining the function of relative frequencies and probabilities, calculating areas of shapes and surface areas of prisms and the constancy of the trigonometric ratios for right-angle triangles.
- Fluency includes applying the index laws to expressions with integer indices, expressing numbers in scientific notation, listing outcomes for experiments and developing familiarity with calculations involving the Cartesian plane.
- Problem Solving includes calculating surface areas and volumes of right prisms, applying ratio and scale factors to similar figures, solving problems involving right-angle trigonometry, and collecting data from secondary sources to investigate an issue.
- Reasoning includes following mathematical arguments, evaluating media reports and using statistical knowledge to draw conclusions, developing strategies in investigating similarity and sketching linear graphs.

Year 9 Content Description

Chapter 1 Indices $1 \quad$ (Number \& Algebra \rightarrow Real Numbers)

\star Apply index laws to numerical expressions with integer indices.
\star Connect different strategies for simplifying expressions with indices to illustrate the meaning of negative indices.
\star Move fluently between representations of numeric and algebraic terms with negative indices.
\star Apply knowledge of index laws to algebraic terms and simplify algebraic expressions, using both positive and negative integral indices.

Chapter 2 Algebra $1 \quad$ (Number \& Algebra \rightarrow Patterns \& Algebra)

\star Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate.
\star Understand that the distributive law can be applied to algebraic expressions as well as numbers, and understanding the inverse relationship between expansion and factorisation.
\star Extend and apply the index laws to variables, using positive integral indices.

Chapter 3 Area (Measurement \& Geometry $\boldsymbol{\rightarrow}$ Using units of measurement)

\star Calculate the areas of composite shapes.
\star Understand that partitioning composite shapes into rectangles and triangles is a strategy for solving problems involving perimeter and area.
\star Analyse nets of prisms and cylinders to establish formulas for surface area.
\star Calculate the surface area of cylinders and right prisms and solve related problems.
\star Become fluent with calculation of area and identify that area is used in the workplace and everyday life.

Chapter $4 \quad$ Graphs \quad (Number \& Algebra \rightarrow Linear \& Non-linear Relationships)

\star Sketch linear graphs using the coordinates of two points.
\star Determine linear rules from suitable diagrams, tables of values and graphs and describe them both using words and algebra.
\star Sketch parabolas, hyperbolas, circles.

Chapter 20 Review
 \star Review of all of above.

Chapter 1 Indices 1

\star Apply index laws to numerical expressions with integer indices.
\star Connect different strategies for simplifying expressions with indices to illustrate the meaning of negative indices
\star Move fluently between representations of numeric and algebraic terms with negative indices.
\star Apply knowledge of index laws to algebraic terms and simplify algebraic expressions, using both positive and negative integral indices.

Lesson	Method	Resources
1	\square Purpose of chapter \square Warm-up Exercise 1.1 and 1.2 p2 \square HW: Read and practice the Sweet Trick on p13	
2	Exercise 1.3, Exercise 1.4, Exercise 1.5 p3 Index Law 1. Exercise 1.6 p4 Some students demonstrate the Sweet Trick p13 HW: Complete Exercises and demonstrate Sweet Trick at home/lodgings	
3	Discussion about Sweet Trick - how to improve presentation Index Law 2. Exercise 1.7 p4 Index Law 3. Exercise 1.8 p 4 (Model solutions to more difficult problems) Index Law 4. Exercise 1.9 p4 HW: Complete Exercises	
4	Index Law 5. Exercise 1.10 p6 (Model solutions) Summary of Index Laws. Exercise 1.11 p 7 (Model solutions) HW: Complete exercises	
5	Discussion of why employers are adamant that employees have adequate mental computation skills - also very useful revision technique Mental computation Exercise 1.13 p9 NAPLAN Questions p10 (Model solutions) HW: Complete NAPLAN Questions	
6	\square Mental computation Exercise 1.14 p9 Group work working on a directed/choice/combination of: Investigation 1.1, 1.2 p 12 A game p13 Technology 1.1, 1.2 p14 HW: A couple of puzzles p13	calculators spreadsheets
7	\square Mental computation Exercise 1.15 p9 Group work working on a choice/directed/combination of: Investigation 1.1, 1.2 p 12 A game p13 Technology 1.1, 1.2 p 14	calculators spreadsheets
8	\square Summary of Index Laws. Exercise 1.12 p8 Competition Questions p11 (Model solutions) HW: Complete Competition Questions	
9	\square Chapter Review 1 p16 \square HW: Complete Chapter Review	
10	\square Chapter Review 2 p16 \square HW: Complete Chapter Review	

Chapter 2 Algebra 1 (Number \& Algebra \rightarrow Patterns \& Algebra)

\star Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate.
\star Understand that the distributive law can be applied to algebraic expressions as well as numbers, and understanding the inverse relationship between expansion and factorisation.

* Extend and apply the index laws to variables, using positive integral indices.

Lesson	Method	Resources
$\mathbf{1}$	\square	Purpose of chapter. Importance of algebra for solving millions of problems
\square	Exercise 2.1 p18 (Model solutions for students)	
\square	Exercise 2.2 p18 and p 19 (Model solutions for students)	
\square	HW: Read and practice the Sweet Trick on p29	

Chapter 3 Area (Measurement \& Geometry \rightarrow Using units of measurement)

\star Calculate the areas of composite shapes.
\star Understand that partitioning composite shapes into rectangles and triangles is a strategy for solving problems involving perimeter and area.

* Analyse nets of prisms and cylinders to establish formulas for surface area.
\star Calculate the surface area of cylinders and right prisms and solve related problems.
\star Become fluent with calculation of area and identify that area is used in the workplace and everyday life.

Lesson	Method	Resources
1	Purpose of chapter. Exercise 3.1 p34 Exercise 3.2 p35 HW: Read and practice the Sweet Trick on p46 and complete exercises	
2	Exercises 3.3, 3.4 p36 Exercises 3.5 p37 Some students demonstrate the Sweet Trick p46 HW: Complete Exercises and demonstrate Sweet Trick at home/lodgings	
3	Discussion about Sweet Trick - how to improve presentation Exercise 3.6, 3.7 p38 Exercise 3.8 p39 (Model solutions) HW: Complete exercises	
4	$\square \quad$ Exercise 3.9 p 40 \square HW: Complete exercise	
5	Mental computation Exercise 3.10 p41 NAPLAN Questions p42 (Model solutions) HW: Complete NAPLAN Questions	
6	\square Mental computation Exercise 3.11 p 41 \square Competition Questions p43 (Model solutions) \square HW: Complete Competition Questions	
7	\square Mental computation Exercise 3.12 p41 Group work working on a directed/choice/combination of: Investigations 3.1, 3.2, 3.3, 3.4 p 44 Technology 3.1, 3.2, 3.3 p 45 A Game p46	grid paper box scissors newspaper Internet
8	Group work working on a directed/choice/combination of: Investigations 3.1, 3.2, 3.3, 3.4 p 44 Technology 3.1, 3.2, 3.3 p 45 A Game p46 HW: A couple of puzzles p46	grid paper box scissors newspaper Internet
9	$\square \quad$ Chapter Review 1 p47 \square HW: Complete Chapter Review	
10	\square Chapter Review 2 p48 \square HW: Complete Chapter Review	

Chapter 4 Graphs (Number \& Algebra $\boldsymbol{\sim}$ Linear \& Non-linear Relationships)

\star Sketch linear graphs using the coordinates of two points.

* Determine linear rules from suitable diagrams, tables of values and graphs and describe them both using words and algebra.
\star Sketch parabolas, hyperbolas, circles.

Lesson	Method	Resources
$\mathbf{1}$	\square	Purpose of chapter
\square	Exercise 4.1 p50 (Model solutions)	
\square	Exercise 4.2 p51 (Model solutions)	
\square	HW: Read and practice the Sweet Trick on p62, complete exercises	

A Task

Work on one of the four tasks at the beginning of each chapter.
(Page 1, page 17, page 33, page 49)

Lesson	Method	Resources	
$\mathbf{1 - 5}$	\square	Setup	Textbook
	\square	Decide whether tasks completed individually, groups of two, three, or four	
\square	Decide which tasks are assigned to individuals/groups		
	\square	$\begin{array}{l}\text { Decide how tasks are to be presented: Oral presentation, poster presentation } \\ \text { (on classroom wall), power point presentation etc. }\end{array}$	
instruments			

Chapter 5 Review

Chapter 1 Indices $1 \quad$ (Number \& Algebra \rightarrow Real Numbers)

* Apply index laws to numerical expressions with integer indices.
\star Connect different strategies for simplifying expressions with indices to illustrate the meaning of negative indices.
\star Move fluently between representations of numeric and algebraic terms with negative indices.
\star Apply knowledge of index laws to algebraic terms and simplify algebraic expressions, using both positive and negative integral indices.

Chapter 2 Algebra 1 (Number \& Algebra \rightarrow Patterns \& Algebra)

\star Apply the distributive law to the expansion of algebraic expressions, including binomials, and collect like terms where appropriate.
\star Understand that the distributive law can be applied to algebraic expressions as well as numbers, and understanding the inverse relationship between expansion and factorisation.
\star Extend and apply the index laws to variables, using positive integral indices.

Chapter 3 Area (Measurement \& Geometry \rightarrow Using units of measurement)

\star Calculate the areas of composite shapes.
\star Understand that partitioning composite shapes into rectangles and triangles is a strategy for solving problems involving perimeter and area.

* Analyse nets of prisms and cylinders to establish formulas for surface area.
\star Calculate the surface area of cylinders and right prisms and solve related problems.
\star Become fluent with calculation of area and identify that area is used in the workplace and everyday life.

Chapter 4 Graphs (Number \& Algebra \rightarrow Linear \& Non-linear Relationships)

\star Sketch linear graphs using the coordinates of two points.
\star Determine linear rules from suitable diagrams, tables of values and graphs and describe them both using words and algebra.
\star Sketch parabolas, hyperbolas, circles.

Lesson	Method	Resources	
$\mathbf{1 - 1 0}$	\square	Purpose of Review	Textbook
	\square	Review 1 p66	Assesssment
	\square	Review 2 p70	instruments
	\square	Repetition of above until mastery?	
	\square	Sample end of term papers (www.drdwyer.com.au)	
	\square	Assessment	

