Answers Chemical Reaction 1

Year 9 Science

K 🖌

Chapter 5

p102	1 A chemical reaction is a process in which one or more substances, the reactants, are transformed into		
	one or more different substances, the products .		
	2 A chemical equation describes what happens in a chemical reaction. The equation shows the reactants on the left hand side, the products on the right hand side, and the chemical formulas of the substances.		
	3 X and Y are the reactants. XY is the product.		
	4 The chemical formula of methane is CH_4		
	5 The chemical formula of carbon dioxide is CO_2		
	 6 One atom of carbon and two atoms of oxygen in a molecule of carbon dioxide (CO₂) 7 One atom of carbon and four atoms of hydrogen in a molecule of methane (CH₄) 		
	8 The reactants (CH_4 and CO_2) have four atoms of hydrogen. The products (CO_2 and $2H_2O$) have		
	four (2x2) atoms of hydrogen. The number of hydrogen atoms are the same.		
102			
p103	1 a) NaCl b) $ZnCl_2$ c) $CuSO_4$ 2 a) $C + O_2$ b) $Zn + 2HCl_2$ $ZnCl_2 + H_2$ a) $CaCO_2 + CO_3$		
	2 a) $C + O_2 \rightarrow CO_2$ b) $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ c) $CaCO_3 \rightarrow CaO + CO_2$ 3 a) $C + O_2 \rightarrow CO_2$ b) $H_1 + Cl_2 \rightarrow 2HCl_2$ c) $CaCO_2 \rightarrow CaO + CO_2$		
	3 a) $C + O_2 \rightarrow CO_2$ b) $H_2 + Cl_2 \rightarrow 2HCl$ c) $CaCO_3 \rightarrow CaO + CO_2$ C = 1 $C = 1$ $H = 2$ $H = 2$ $Ca = 1$ $Ca = 1O = 2$ $O = 2$ $Cl = 2$ $Cl = 2$ $Cl = 2$ $C = 1$ $C = 1$		
	O=2 $O=2$ $Cl=2$ $Cl=2$ $C=1$ $C=1O=3$ $O=3$		
	d) $Zn + CuSO_{\bullet} \Rightarrow ZnSO_{\bullet} + Cu$ e) $H.SO_{\bullet} + 2NaOH \Rightarrow Na.SO_{\bullet} + 2H_{\bullet}O$		
	d) $Zn + CuSO_4 \Rightarrow ZnSO_4 + Cu$ e) $H_2SO_4 + 2NaOH \Rightarrow Na_2SO_4 + 2H_2O$ Zn = 1 $Zn = 1$ $H = 4$ $H = 4Cu = 1$ $Cu = 1$ $S = 1$ $S = 1S = 1$ $S = 1$ $O = 6$ $O = 6O = 4$ $O = 4$ $Na = 2$ $Na = 2$		
	$\begin{array}{cccc} Cu = 1 & Cu = 1 & S = 1 \\ S = 1 & S = 1 & O = C \end{array}$		
	S = 1 $S = 1$ $O = 0$ $O = 0O = 4$ $O = 4$ $Na = 2$ $Na = 2$		
	f) $C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ C = 3 H = 8 $H = 8$ $C = 3H = 8$ $H = 8$ $C = 12H = 22$ $H = 22$ $C = 12H = 22$		
	C = 3 $C = 3$ $C = 12$ $C = 12$ $C = 12$		
	$ \begin{array}{cccc} H = 8 & H = 8 & H = 22 & H = 22 \\ O = 10 & O = 10 & O = 35 & O = 35 \end{array} $		
p104	1 Zn + HCl \rightarrow ZnCl ₂ + H ₂ 2 N ₂ + 3H ₂ \rightarrow 2NH ₃ 3 Al + Br ₂ \rightarrow AlBr ₃		
	$1 Zn + HCl \Rightarrow ZnCl_2 + H_2 \qquad 2 N_2 + 3H_2 \Rightarrow 2NH_3 \qquad 3 Al + Br_2 \Rightarrow AlBr_3 \\ Zn = 1 \qquad Zn = 1 \qquad N = 2 \qquad N = 2 \qquad Al = 1 Al = 1 \\ H = 1 \qquad H = 2 \qquad H = 6 \qquad H = 6 \qquad Br = 2 Br = 3 $		
	H = 1 $H = 2$ $H = 6$ $H = 6$ $Br = 2$ $Br = 3Cl = 1$ $Cl = 2$ Balanced equation Not balanced for Br		
	Not balanced for H or Cl		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	O = 2 $O = 1$ $O = 6$ $O = 2$ $H = 6$ $H = 8$		
	Not balanced for O Not balanced for S or O $O = 10$ $O = 10$		
	Not balanced for C or H 7 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ 8 $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$		
	C=3 $C=3$ $C=5$ $C=5$		
	H = 8 $H = 8$ $H = 12$ $H = 12$		
	O = 10 $O = 10$ $O = 16$ $O = 16Balanced equation Balanced equation$		
	Duranded equation		

p104	4 9 $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$ 10 $CO_2 + 2H_2O \rightarrow$	30 + CHO		
рточ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C = 6		
	H = 22 $H = 22$ $O = 4$	O = 12		
	O = 35 $O = 35$ $H = 4$	H = 12		
	Balanced equation Not balanced for	C, O or H		
	$11 \text{ Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \qquad 12 \text{ 4NH}_3 + 3\text{O}_2 \rightarrow$			
	Ca = 1 $Ca = 1$ $N = 4$			
	O = 4 $O = 4$ $H = 12$			
	$H = 2 \qquad H = 2 \qquad O = 6$	O = 6		
	C = 1 $C = 1$ Balanced equation	on		
	Balanced equation			
	13 $K \subset C \to B_2 \subset C \to K \subset C \to C \to C$	$2CO + 2E_{2}$		
	13 $K_2CO_3 + BaCl_2 \rightarrow KCl + BaCO_3$ $K = 2$ $K = 1$ 14 $Fe_2O_3 + 3C \rightarrow Fe = 2$	5CO + 2Fe $F_0 = 2$		
	C = 1 $C = 1$ $C = 3$			
	O = 3 $O = 3$ $C = 3$			
	$Ba = 1 \qquad Ba = 1 \qquad Balanced equations Balanced equations Balanced equations and the second s$			
	Cl = 2 $Cl = 1$ Datanced equal			
	Not balanced for K or Cl			
	15 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ 16 $Mg(OH)_2 + H_2SO_4$	$D_4 \rightarrow MgSO_4 + 2H_2O$		
		Mg = 1		
	S = 1 $S = 1$ $O = 6$			
	O = 6 $O = 6$ $H = 4$			
	Na = 2 $Na = 2$ $S = 1$	S = 1		
	Balanced equation Balanced equa			
p105	5 1 2Cu + $O_2 \rightarrow 2CuO$ 2 2H ₂ + $O_2 \rightarrow 2H_2O$ 3 2H ₂ O \rightarrow 2H ₂	$+ O_2$ 4 8Fe + S ₈ \rightarrow 8FeS		
-	5 2Fe + 3Cl ₂ \rightarrow 2FeCl ₃ 6 2NaCl \rightarrow 2Na + Cl ₂ 7 3Ca + N ₂ \rightarrow 0	CaN 8 H + Br \rightarrow 2HBr		
		9 4Al + $3O_2 \rightarrow 2Al_2O_3$ 10 $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$ 11 $2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$		
	12 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$ 13 $Fe_2O_3 + 3C \rightarrow 3CO + 2Fe$			
	14 $\operatorname{Fe_2O_3} + 3\operatorname{CO} \rightarrow 3\operatorname{CO_2} + 2\operatorname{Fe}$ 15 $\operatorname{CH_4} + 2\operatorname{O_2} \rightarrow \operatorname{CO_2} + 2\operatorname{H_2O}$			
	16 $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$			
n107	7 1 A combination reaction occurs when two or more substances combined	ne chemically to produce one		
p107	product. $X + Y \rightarrow XY$ is a combination reaction.	1 A combination reaction occurs when two or more substances combine chemically to produce one product $X + Y \rightarrow XY$ is a combination reaction		
	2 X and Y are the reactants. XY is the product.			
	*			
	3 a) and e) are the combination reactions (producing one product).			
	4 $2Mg + O_2 \rightarrow 2MgO$ 5 $CaO + H_2O \rightarrow Ca(OH)_2$			
p109		roken down into simpler substances.		
	$XY \rightarrow X + Y$ is a decomposition reaction.			
	2 XY is the reactant. X and Y are the products.			
	3 a) and d) are the decomposition reactions (a compound broken down into simpler substances).			
	4 I would expect glucose to be broken down to carbon and water: $C_6 H_{12} O_6 \Rightarrow C + H_2 O$			
	0			

p111	 1 A single replacement reaction occurs when an element in a compound is replaced by another element. XY + Z → XZ + Y is a single replacement reaction. 2 XV and Z are the reactants. XZ and X are the products. 		
	2 XY and Z are the reactants. XZ and Y are the products.		
	3 a) and c) are single replacement reactions.		
	4 $Fe_2O_3 + 2A1 \rightarrow 2Fe + Al_2O_3$ The Al replaces the Fe in the Fe_2O_3 A single replacement.		
p113	1 A double replacement reaction occurs two compounds swap elements to produce two new compounds.		
	$AB + CD \rightarrow AD + CB$ is a double replacement reaction.		
	2 AB and CD are the reactants. AD and CB are the products.		
	3 HCl + NaOH \rightarrow NaCl + H ₂ O		
	4 a) $2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$ b) $2HNO_3 + Mg(OH)_2 \rightarrow Mg(NO_3)_2 + 2H_2O$		
	c) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$		
p115	1 Reactions that produce energy are called exothermic reactions. The burning of fossil fuels such as coal,		
piio	oil, and gas produce heat. These are exothermic reactions. A reaction that produces heat, exothermic ,		
	will warm the surroundings.		
	2 Reactions that absorb energy are called endothermic reactions. Many decomposition reactions absorb		
	heat in breaking the compound into smaller compounds. These are endothermic reactions. A reaction		
	that absorbs heat, endothermic , will cool the surroundings.		
	3 a) The temperature in an exothermic reaction increases.		
	b) The temperature in an endothermic reaction decreases.		
	4 a) exothermic b) neither (more information is needed such as room temperature- is temperature		
	gained or lost to the surroundings, and time between measurements) c) exothermic d)		
	endothermic		
p116	1 2Mg + $O_2 \rightarrow 2MgO$ b) CaCO ₃ \rightarrow CaO + CO ₂ c) 2C ₂ H ₂ + 5O ₂ \rightarrow 4CO ₂ + 2H ₂ O		
	Mass is conserved $O = 3$ $O = 3$ $O = 10$ $O = 10$		
	Mass is conserved Mass is conserved		
m117	1 The number of atoms in the reactants is equal to the number of atoms in the products.		
p117	1 The number of atoms in the reactants is equal to the number of atoms in the products. 2 a) $27n + 0 \rightarrow 27n0$ b) $2H0 \rightarrow 2H0 + 0$ c) $Sn0 + 2H \rightarrow Sn + 2H0$		
	2 a) $2Zn + O_2 \rightarrow 2ZnO$ b) $2H_2O_2 \rightarrow 2H_2O + O_2$ c) $SnO_2 + 2H_2 \rightarrow Sn + 2H_2O$ Zn = 2 $Zn = 2$ $H = 4$ $H = 4$ $Sn = 1$ $Sn = 1O = 2$ $O = 2$ $O = 4$ $O = 4$ $O = 2$ $O = 2$		
	O = 2 $O = 2$ $O = 4$ $O = 4$ $O = 2$ $O = 2$		
	Mass is conserved Mass is conserved $H = 4$ $H = 4$		
	Mass is conserved		
	3 a) $C + O_2 \rightarrow CO_2$ b) $C + O_2 \rightarrow CO_2$		
	12 grams + 32 grams \rightarrow 44 grams 6 tonnes + 16 tonnes \rightarrow 22 tonnes		
	44 grams of CO_2 will be produced 16 tonnes of oxygen would be needed		
n110	1 Ores are metal compounds, usually oxides, carbonates, and/or sulphides of the metal, mixed with sandy		
p118	impurities.		
	2 Iron (Fe) is extracted from iron oxide (Fe ₂ O ₃) by heating at high temperatures, in a blast furnace, with		
	carbon. $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$		
	3 Aluminium (Al) is extracted from pure aluminium oxide (Al_2O_3) by electrolysis at high temperature		
	(1000°C). $2Al_2O_3 \rightarrow 4Al + 3O_2$		
	4 Single replacement reaction. $Cu_2S + O_2 \rightarrow Cu + SO_2$		
n110	1 Respiration is the release of energy from glucose, or other carbohydrates. This energy is used for cell		
p119	growth and repair.		
	2 Respiration $C_6H_{12}O_6 + O_2 \rightarrow H_2O + CO_2 + Energy$ glucose + oxygen \rightarrow water + carbon dioxide + energy		
	3 Respiration provides the energy for life		
	4 All living organisms use respiration to provide energy		
	5 $C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 + Energy$		

p122 1 A chemical reaction is a process in which one or more substances, the reactants, are transformed into one or more different substances, the products. 2 A chemical equation describes what happens in a chemical reaction. The equation shows the reactants on the left hand side, the products on the right hand side, and the chemical formulas of the substances. 3 X and Y are the reactants. XY is the product. 4 a) $C + O_2 \rightarrow CO_2$ b) $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ c) $CaCO_3 \rightarrow CaO + CO_2$ 5 a) $C + O_2 \rightarrow CO_2$ b) $H_2 + Cl_2 \rightarrow 2HCl$ c) $CaCO_2 \rightarrow CaO + CO_2$ $\begin{array}{c} C = 1 \\ O = 2 \end{array}^{2} \qquad \begin{array}{c} C = 1 \\ O = 2 \end{array}$ $\dot{H} = 2$ H = 2Cl = 2 Cl = 2Ca = 1 Ca = 1C = 1 C = 1O = 3 O = 3 $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$ e) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ **d**) Zn = 1H = 4H = 4Zn = 1Cu = 1Cu = 1S = 1S = 1S = 1S = 1 O = 6O = 6O = 4O = 4Na = 2Na = 2 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ g) $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O_2$ **f**) C = 3 C = 3C = 12C = 12H = 8H = 8H = 22 H = 22O = 10 O = 10 O = 35 O = 35 p123 1 Zn + HCl \rightarrow ZnCl₂ + H₂ Zn = 1Zn = 1H = 2H = 1Cl = 1Cl = 2Not balanced for H or Cl **3** $2S + 3O_2 \rightarrow SO_2$ S = 2 S = 1 O = 6 O = 2 **4** $C_2H_6 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ C = 2 C = 3 H = 6 H = 82 $H_2 + O_2 \rightarrow H_2O$ H = 2 H = 2O = 1 O = 2Not balanced for O Not balanced for S or O O = 10O = 10Not balanced for C or H **5** $C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ C = 3 C = 3**6** C_5H_{12} + $8O_2 \rightarrow 5CO_2$ + $6H_2O$ $\tilde{C} = 5$ C = 5 H = 8H = 8H = 12 H = 12O = 10 O = 16 O = 16 O = 10**Balanced** equation **Balanced** equation 8 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ 7 CO_2 + 2H₂O \rightarrow 3O₂ + C₆H₁₂O₆ C = 1 Ca = 1 Ca = 1 C = 6O = 12 O = 4O = 4O = 4H = 4H = 12H = 2H = 2Not balanced for C, O, or H Balanced equation 9 $Fe_2O_3 + 3C \rightarrow 3CO + 2Fe$ 10 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ Fe = 2Fe = 2H = 4H = 4O = 3O = 3S = 1S = 1C = 3C = 3O = 6O = 6Balanced equation Na = 2Na = 2Balanced equation 11 $Mg(OH)_2 + H_2SO_4 \rightarrow MgSO_4 + 2H_2O$ Mg = 1Mg = 1O = 6O = 6H = 4H = 4S = 1S = 1**Balanced** equation

n123	12 Cu + O ₂ \rightarrow 2CuO 13 2H ₂ + O ₂ \rightarrow 2H ₂ O 14 2H ₂ O \rightarrow 2H ₂ + O ₂			
P125	$12 \operatorname{Cu} + \operatorname{O}_2 \twoheadrightarrow 2\operatorname{Cu} \longrightarrow 13 \operatorname{ZH}_2 + \operatorname{O}_2 \twoheadrightarrow 2\operatorname{ZH}_2 \longrightarrow 14 \operatorname{ZH}_2 \oplus \operatorname{ZH}_2 + \operatorname{O}_2$ $15 \operatorname{ZNaCl} \twoheadrightarrow 2\operatorname{Na} + \operatorname{Cl}_2 \qquad 16 \operatorname{4Al} + \operatorname{3O}_2 \twoheadrightarrow 2\operatorname{Al}_2 \operatorname{O}_3 \qquad 17 \operatorname{ZAgNO}_3 + \operatorname{Cu} \twoheadrightarrow \operatorname{Cu}(\operatorname{NO}_3)_2 + \operatorname{ZAg}$			
	$18 \operatorname{Fe}_{2}O_{3} + 3C \rightarrow 3CO + 2\operatorname{Fe} 19 \operatorname{CH}_{4} + 2O_{2} \rightarrow CO_{2} + 2\operatorname{H}_{2}O 20 \ 2C_{2}\operatorname{H}_{6} + 7O_{2} \rightarrow 4CO_{2} + 6\operatorname{H}_{2}O$			
p124	1 A decomposition reaction occurs when a compound is chemically broken down into simpler substances.			
p124	$XY \rightarrow X + Y$ is a decomposition reaction.			
	 2 XY is the reactant. X and Y are the products. 			
	*			
	3 a) and d) are the decomposition reactions (a compound broken down into simpler substances).			
	4 I would expect glucose to be broken down to carbon and water: $C_6H_{12}O_6 \rightarrow C + H_2O$			
	5 A combination reaction occurs when two or more substances combine chemically to produce one product $X + X \rightarrow XY$ is a combination reaction			
	product. $X + Y \rightarrow XY$ is a combination reaction.			
	 6 X and Y are the reactants. XY is the product. 7 a) and a) are the combination reactions (producing one product). 			
	7 a) and e) are the combination reactions (producing one product).			
	8 $2Mg + O_2 \rightarrow 2MgO$ 9 $CaO + H_2O \rightarrow Ca(OH)_2$			
.125				
p125				
	3 keg + nails = 100 pounds keg + 0.5 nails = 54 pounds X			
	0.5 nails = 100 - 54 pounds 3 2 2			
	0.5 nails = 46 pounds			
	nails = 92 pounds			
	Thus keg = 8 pounds			
p126	1 A single replacement reaction occurs when an element in a compound is replaced by another element.			
	$XY + Z \rightarrow XZ + Y$ is a single replacement reaction.			
	2 XY and Z are the reactants. XZ and Y are the products.			
	3 a) and c) are single replacement reactions.			
	4 $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$ The Al replaces the Fe in the Fe_2O_3 A single replacement.			
	5 A double replacement reaction occurs two compounds swap elements to produce two new compounds.			
	$AB + CD \rightarrow AD + CB$ is a double replacement reaction.			
	6 AB and CD are the reactants. AD and CB are the products.			
	7 HCl + NaOH \rightarrow NaCl + H ₂ O 8 \rightarrow 2HCl + C ₂ (OH) \rightarrow C ₂ Cl + 2HO \rightarrow b) 2HDO + M ₂ (OH) \rightarrow M ₂ (NO) \rightarrow 2HO			
	8 a) $2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$ b) $2HNO_3 + Mg(OH)_2 \rightarrow Mg(NO_3)_2 + 2H_2O$			
	c) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$			
105				
p127	1 Reactions 2 and 4 are exothermic 2 Reaction 3 is endothermic 3 b) between 290°C and 450°C			
	4 a) Ag_2CO_3			
p128	1 a) Reactants are NaHCO ₃ and $C_6H_8O_7$ b) Products are $C_6H_5Na_3O_7$, CO_2 , and H_2O c) The cool feeling			
	is evidence of an endothermic reaction d) The fizzy feeling is probably caused by the CO_2 gas e) Yes			
	2 a) No - because some of the mass (CO2) has escaped. b) Completely seal the beaker before and after.			
	3 a) $12 + 32 = 44$ grams (assuming all of the C combines with the O ₂) b) 16 tonnes of oxygen			
	4 a) double replacement b) decomposition c) combination d) single replacement			
	5 a) $2Zn + O_2 \rightarrow 2ZnO$ b) $4Al + 3O_2 \rightarrow 2Al_2O_3$ c) $4Na + O_2 \rightarrow 2Na_2O$			
	6 a) yes b) yes c) no d) yes e) no f) no			