Answers
 Chemical Reaction 1

Year 9 Science

Chapter 5

p102	1 A chemical reaction is a process in which one or more substances, the reactants, are transformed into one or more different substances, the products. 2 A chemical equation describes what happens in a chemical reaction. The equation shows the reactants on the left hand side, the products on the right hand side, and the chemical formulas of the substances. 3 X and Y are the reactants. XY is the product. 4 The chemical formula of methane is CH_{4} 5 The chemical formula of carbon dioxide is CO_{2} 6 One atom of carbon and two atoms of oxygen in a molecule of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ 7 One atom of carbon and four atoms of hydrogen in a molecule of methane $\left(\mathrm{CH}_{4}\right)$ 8 The reactants $\left(\mathrm{CH}_{4}\right.$ and $\left.\mathrm{CO}_{2}\right)$ have four atoms of hydrogen. The products $\left(\mathrm{CO}_{2}\right.$ and $\left.2 \mathrm{H}_{2} \mathrm{O}\right)$ have four (2×2) atoms of hydrogen. The number of hydrogen atoms are the same.
	a) NaCl b) ZnCl_{2} c) CuSO_{4} a) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ b) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ c) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ a) $\begin{array}{ll} \mathrm{C}+\mathrm{O}_{2} \rightarrow & \mathrm{CO}_{2} \\ \mathrm{C}=1 & \mathrm{C}=1 \\ \mathrm{O}=2 & \mathrm{O}=2 \end{array}$ b) $\begin{array}{cc} \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow & 2 \mathrm{HCl} \\ \mathrm{H}=2 & \mathrm{H}=2 \\ \mathrm{Cl}=2 & \mathrm{Cl}=2 \end{array}$ c) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ $\mathrm{Ca}=1$ $\mathrm{Ca}=1$ $\mathrm{C}=1 \quad \mathrm{C}=1$ $\mathrm{O}=3 \quad \mathrm{O}=3$ d) e) f) $\begin{array}{cc} \mathrm{Zn}+\mathrm{CuSO}_{4} & \rightarrow \\ \mathrm{ZnSO} \\ \mathrm{Zn}=1 \\ \mathrm{Zn}=1 \\ \mathrm{Cu}=1 & \mathrm{Cu}=1 \\ \mathrm{~S}=1 & \mathrm{~S}=1 \\ \mathrm{O}=4 & \mathrm{O}=4 \\ \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow & 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{C}=3 & \mathrm{C}=3 \\ \mathrm{H}=8 & \mathrm{H}=8 \\ \mathrm{O}=10 & \mathrm{O}=10 \end{array}$ $\begin{array}{cc} \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} & \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{H}=4 & \mathrm{H}=4 \\ \mathrm{~S}=1 & \mathrm{~S}=1 \\ \mathrm{O}=6 & \mathrm{O}=6 \\ \mathrm{Na}=2 & \mathrm{Na}=2 \end{array}$ g) $\begin{array}{cc} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \\ \mathrm{C}=12 & \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{C}=12 \\ \mathrm{O}=22 & \mathrm{H}=22 \\ \mathrm{O}=35 & \mathrm{O}=35 \end{array}$
p104	

p104	
p105	
p107	1 A combination reaction occurs when two or more substances combine chemically to produce one product. $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY}$ is a combination reaction. 2 X and Y are the reactants. XY is the product. 3 a) and \mathbf{e}) are the combination reactions (producing one product). $42 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \quad 5 \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
p109	1 A decomposition reaction occurs when a compound is chemically broken down into simpler substances. $\mathrm{XY} \rightarrow \mathrm{X}+\mathrm{Y}$ is a decomposition reaction. 2 XY is the reactant. X and Y are the products. 3 a) and d) are the decomposition reactions (a compound broken down into simpler substances). 4 I would expect glucose to be broken down to carbon and water: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{C}+\mathrm{H}_{2} \mathrm{O}$

p111	1 A single replacement reaction occurs when an element in a compound is replaced by another element. $\mathrm{XY}+\mathrm{Z} \rightarrow \mathrm{XZ}+\mathrm{Y}$ is a single replacement reaction. 2 XY and Z are the reactants. XZ and Y are the products. 3 a) and \mathbf{c}) are single replacement reactions. $4 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$ The Al replaces the Fe in the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ A single replacement.
p113	1 A double replacement reaction occurs two compounds swap elements to produce two new compounds. $\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}$ is a double replacement reaction. 2 AB and CD are the reactants. AD and CB are the products. $3 \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ 4 a) $2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ b) $2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$ c) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
p115	1 Reactions that produce energy are called exothermic reactions. The burning of fossil fuels such as coal, oil, and gas produce heat. These are exothermic reactions. A reaction that produces heat, exothermic, will warm the surroundings. 2 Reactions that absorb energy are called endothermic reactions. Many decomposition reactions absorb heat in breaking the compound into smaller compounds. These are endothermic reactions. A reaction that absorbs heat, endothermic, will cool the surroundings. 3 a) The temperature in an exothermic reaction increases. b) The temperature in an endothermic reaction decreases. 4 a) exothermic b) neither (more information is needed such as room temperature- is temperature gained or lost to the surroundings, and time between measurements) c) exothermic d) endothermic
p1	$12 \mathrm{Mg}+\mathrm{O}_{2}$ $\rightarrow 2 \mathrm{MgO}$ b) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ c) $2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2}$ $\rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{Mg}=2$ $\mathrm{Mg}=2$ $\mathrm{Ca}=1$ $\mathrm{Ca}=1$ $\mathrm{C}=4$ $\mathrm{C}=4$ $\mathrm{O}=2$ $\mathrm{O}=2$ $\mathrm{C}=1$ $\mathrm{C}=1$ $\mathrm{H}=4$ $\mathrm{H}=4$ Mass is conserved $\mathrm{O}=3$ $\mathrm{O}=3$ $\mathrm{O}=10$ $\mathrm{O}=10$ Mass is conserved Mass is conserved
p117	1 The number of atoms in the reactants is equal to the number of atoms in the products. 2 a) $\begin{array}{cl} 2 \mathrm{Zn}+\mathrm{O}_{2} & \rightarrow \begin{array}{l} 2 \mathrm{ZnO} \\ \mathrm{Zn}=2 \\ \mathrm{O}=2 \end{array} \\ \mathrm{Zn}=2 \\ \mathrm{O}=2 \end{array}$ b) $\begin{array}{cc} \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow & 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \\ \mathrm{H}=4 & \mathrm{H}=4 \\ \mathrm{O}=4 & \mathrm{O}=4 \end{array}$ Mass is conserved Mass is conserved b) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ 12 grams +32 grams $\rightarrow 44$ grams 6 tonnes +16 tonnes $\rightarrow 22$ tonnes 44 grams of CO_{2} will be produced 16 tonnes of oxygen would be needed
p118	1 Ores are metal compounds, usually oxides, carbonates, and/or sulphides of the metal, mixed with sandy impurities. $2 \operatorname{Iron}(\mathrm{Fe})$ is extracted from iron oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ by heating at high temperatures, in a blast furnace, with carbon. $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$ 3 Aluminium (Al) is extracted from pure aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ by electrolysis at high temperature $\left(1000^{\circ} \mathrm{C}\right) . \quad 2 \mathrm{Al}_{2} \mathrm{O}_{3} \quad \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$ 4 Single replacement reaction. $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}$
p119	```1 Respiration is the release of energy from glucose, or other carbohydrates. This energy is used for cell growth and repair. 2 Respiration \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\) Energy glucose + oxygen \(\rightarrow\) water + carbon dioxide + energy 3 Respiration provides the energy for life 4 All living organisms use respiration to provide energy \(5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}+\) Energy```

p122	1 A chemical reaction is a process in which one or more substances, the reactants, are transformed into one or more different substances, the products. 2 A chemical equation describes what happens in a chemical reaction. The equation shows the reactants on the left hand side, the products on the right hand side, and the chemical formulas of the substances. 3 X and Y are the reactants. XY is the product. 4 a) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ b) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ c) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ 5 a) $\begin{array}{ll} \mathrm{C}+\mathrm{O}_{2} \rightarrow & \mathrm{CO}_{2} \\ \mathrm{C}=1 & \mathrm{C}=1 \\ \mathrm{O}=2 & \mathrm{O}=2 \end{array}$ b) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ c) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ $\mathrm{H}=2$ $\mathrm{H}=2$ $\mathrm{Cl}=2$ $\mathrm{Ca}=1 \quad \mathrm{Ca}=1$ $\mathrm{C}=1 \quad \mathrm{C}=1$ $\mathrm{O}=3 \quad \mathrm{O}=3$ d) e) f) $\begin{array}{cc} \mathrm{Zn}+\mathrm{CuSO}_{4} & \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu} \\ \mathrm{Zn}=1 & \mathrm{Zn}=1 \\ \mathrm{Cu}=1 & \mathrm{Cu}=1 \\ \mathrm{~S}=1 & \mathrm{~S}=1 \\ \mathrm{O}=4 & \mathrm{O}=4 \\ \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} & \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{C}=3 & \mathrm{C}=3 \\ \mathrm{H}=8 & \mathrm{H}=8 \\ \mathrm{O}=10 & \mathrm{O}=10 \end{array}$ $\begin{array}{cc} \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} & \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{H}=4 & \mathrm{H}=4 \\ \mathrm{~S}=1 & \mathrm{~S}=1 \\ \mathrm{O}=6 & \mathrm{O}=6 \\ \mathrm{Na}=2 & \mathrm{Na}=2 \end{array}$ g) $\begin{array}{cc} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} & \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{C}=12 & \mathrm{C}=12 \\ \mathrm{H}=22 & \mathrm{H}=22 \\ \mathrm{O}=35 & \mathrm{O}=35 \end{array}$
p123	Not balanced for H or Cl $\begin{array}{clcc} 3 & 2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} & 4 \mathrm{C}_{2} \mathrm{H}_{6}+5 \mathrm{O}_{2} \rightarrow & 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{~S}=2 & \mathrm{~S}=1 & \mathrm{C}=2 & \mathrm{C}=3 \\ \mathrm{O}=6 & \mathrm{O}=2 & \mathrm{H}=6 & \mathrm{H}=8 \\ \text { Not balanced for } \mathrm{S} \text { or } \mathrm{O} & \mathrm{O}=10 & \mathrm{O}=10 \end{array}$ Not balanced for C or H$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ $32 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$ $4 \mathrm{C}_{2} \mathrm{H}_{6}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}=2$ $\mathrm{H}=2$ $\mathrm{~S}=2$ $\mathrm{~S}=1$ $\mathrm{C}=2$ $\mathrm{C}=3$ $\mathrm{O}=2$ $\mathrm{O}=1$ $\mathrm{O}=6$ $\mathrm{O}=2$ $\mathrm{H}=6$ $\mathrm{H}=8$ Not balanced for O Not balanced for S or O $\mathrm{O}=10$ $\mathrm{O}=10$ $\begin{array}{\|cc} 5 \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{C}=3 & \mathrm{C}=3 \\ \mathrm{H}=8 & \mathrm{H}=8 \\ \mathrm{O}=10 & \mathrm{O}=10 \end{array}$ Balanced equation Balanced equation Not balanced for C, O, or H $9 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 3 \mathrm{CO}+2 \mathrm{Fe}$ $\mathrm{Fe}=2 \quad \mathrm{Fe}=2$ $\mathrm{O}=3 \quad \mathrm{O}=3$ $\mathrm{C}=3 \quad \mathrm{C}=3$ Balanced equation Balanced equation $11 \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{Mg}=1 \quad \mathrm{Mg}=1$ $\mathrm{O}=6 \quad \mathrm{O}=6$ $\mathrm{H}=4$ $\mathrm{H}=4$ $\mathrm{S}=1$ $\mathrm{S}=1$ Balanced equation

p123	$\begin{aligned} & 12 \mathrm{Cu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CuO} \quad \mathbf{1 3} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \mathbf{1 4} 2 \mathrm{H}_{2} \mathrm{O} \boldsymbol{\rightarrow} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \\ & \mathbf{1 5} 2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2} \quad \mathbf{1 6} 4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathbf{1 7} 2 \mathrm{AgNO}_{3}+\mathrm{Cu} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag} \\ & \mathbf{1 8} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 3 \mathrm{CO}+2 \mathrm{Fe} \quad 19 \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} 202 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
p124	1 A decomposition reaction occurs when a compound is chemically broken down into simpler substances. $\mathrm{XY} \rightarrow \mathrm{X}+\mathrm{Y}$ is a decomposition reaction. 2 XY is the reactant. X and Y are the products. 3 a) and d) are the decomposition reactions (a compound broken down into simpler substances). 4 I would expect glucose to be broken down to carbon and water: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{C}+\mathrm{H}_{2} \mathrm{O}$ 5 A combination reaction occurs when two or more substances combine chemically to produce one product. $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY}$ is a combination reaction. 6 X and Y are the reactants. XY is the product. 7 a) and \mathbf{e}) are the combination reactions (producing one product). $82 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \quad 9 \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
p125	
p126	1 A single replacement reaction occurs when an element in a compound is replaced by another element. $\mathrm{XY}+\mathrm{Z} \rightarrow \mathrm{XZ}+\mathrm{Y}$ is a single replacement reaction. 2 XY and Z are the reactants. XZ and Y are the products. 3 a) and \mathbf{c}) are single replacement reactions. $4 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathrm{The} \mathrm{Al}$ replaces the Fe in the $\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{~A}$ single replacement. 5 A double replacement reaction occurs two compounds swap elements to produce two new compounds. $\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}$ is a double replacement reaction. 6 AB and CD are the reactants. AD and CB are the products. $7 \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ 8 a) $2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ b) $2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$ c) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
p127	1 Reactions 2 and 4 are exothermic 2 Reaction 3 is endothermic $\mathbf{3}$ b) between $290^{\circ} \mathrm{C}$ and $450^{\circ} \mathrm{C}$ 4 a) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
p128	1 a) Reactants are NaHCO_{3} and $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ b) Products are $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Na}_{3} \mathrm{O}_{7}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ c) The cool feeling is evidence of an endothermic reaction d) The fizzy feeling is probably caused by the CO_{2} gas e) Yes 2 a) No - because some of the mass (CO2) has escaped. b) Completely seal the beaker before and after. 3 a) $12+32=44$ grams (assuming all of the C combines with the O_{2}) b) 16 tonnes of oxygen 4 a) double replacement b) decomposition c) combination d) single replacement 5 a) $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$ b) $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$ c) $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$ 6 a) yes b) yes c) no d) yes e) no f) no

